Transient Infrared Study of Methanation and Ethylene Hydroformylation over Rh/SiO₂ Catalysts

Determination of reactivity and surface coverage of intermediates has been a challenging goal in fundamental research of heterogeneous catalysis. First Happel et al. (1) and later Biloen and co-workers (2, 3) employed the use of a transient rate tracer method for the determination of the intrinsic rate constant, k, and the fractional surface coverage, Θ , of intermediates for steady-state carbon monoxide hydrogenation. The method was further developed and termed steady-state isotopic transient kinetic analysis (SSITKA) by Goodwin and co-workers (4, 5). SSITKA is a transient method for the investigation of kinetics and mechanism of heterogeneous catalysis under steady-state conditions. The approach involves an abrupt switch from an inlet reactant species to a corresponding isotopically labeled species. The advantage of SSITKA from other transient methods is that the chemical environment of the catalyst surface does not vary with the transient state of the isotopic tracer, yielding tracer response curves for the determination of k and Θ (6, 7). The method has been applied in the investigation of the mechanism of methanation (1, 2, 8), Fischer-Tropsch synthesis (3, 9, 10), ammonia synthesis (5), and partial oxidation of methane (4).

In situ infrared spectroscopy (IR) allows for the direct observation of adsorbed species under reaction conditions (11). Incorporation of in situ IR spectroscopy with SSITKA may provide information on the surface coverages of IR observable species under reaction conditions (12) and has the potential for distinguishing between reaction intermediates and surface adsorbed spectator species. This paper reports the

use of IR combined with SSITKA to study methanation and ethylene hydroformylation on Rh/SiO₂ at 513 K and 0.1 MPa.

The 3 wt% Rh/SiO₂ catalyst was prepared by the incipient wetness method. An aqueous solution of Rh(NO₃)₃ · 2H₂O (Johnson-Matthey) was impregnated into a SiO₂ support (Strem Chemicals). The ratio of solution and silica support was 1:1. After impregnation, the sample was dried overnight in air at 301 K and then reduced in flowing H₂ at 673 K for 16 h. The H₂ uptake of the catalyst at room temperature was measured to be 29.0 μ mol/g. Details of the catalyst characterization have been reported elsewhere (13). Sixty-three mg of the catalyst was pressed into self-supporting disks and placed in an IR reactor cell which has a void volume of 0.64 cm³. The IR reactor cell acts like a differential reactor. The catalyst was further reduced at 513 K for 2 h in situ before each experiment.

The flowrates of CO, H₂, and He were 10, 10, and 20 cm³/min, respectively, during CO hydrogenation, and the flowrates of CO, H_2 , and C_2H_4 were 20, 20, and 20 cm³/ min, respectively, for hydroformylation. Both reactions were held at steady-state for I h before the isotopic switch. The CO contains 2% Ar for determining the effect of gas-phase holdup in the reactor and the gas transportation lines on the transient response of gaseous products. The average residence time of the Ar response is the sum of the average residence times of the reactant flow in the transportation lines, the reactor, and the MS inlet system. The switch between CO (12CO) and 13CO is made via a low-dead-volume Valco switch valve. The IR spectra were recorded by a

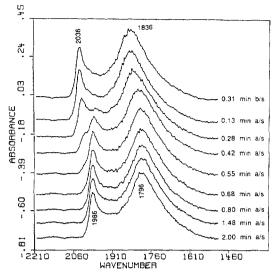


FIG. 1. The *in situ* infrared spectrum of methanation during the isotopic transient switch between CO and ¹³CO; b/s denotes before switch, a/s denotes after switch.

Nicolet 5SXC spectrometer with a DTGS detector at a resolution of 4 cm⁻¹ and a rate of 1 scan per s. For a low signal-to-noise ratio, three scans were coadded for the transient data. The transient response of the gaseous products from the IR cell were recorded by a Balzers QMG112 mass spectrometer (MS) interfaced to a microcompu-

ter. The MS is equipped with a differentially pumped inlet system for fast response. The m/e ratios followed by the MS were 15 for CH₄, 28 for CO, 29 for ¹³CO, 40 for Ar, and 59 for C₂H₅ ¹³CHO. The m/e ratios were carefully selected to prevent interference from the fragmentation of parent species. The gaseous products were analyzed by a HP-5890A gas chromatograph with an FID detector.

Methane was the only hydrocarbon product observed during CO hydrogenation over Rh/SiO₂ at 513 K and 0.1 MPa with a turnover frequency (TOF) of 0.015 min⁻¹. The TOF reported here agrees with that reported elsewhere for Rh/SiO₂ (14). The conversion of CO was 0.01%. Figure 1 is the IR transient response to an isotopic switch from CO to ¹³CO during CO hydrogenation. The IR spectra for CO hydrogenation before the switch shows a linearly adsorbed CO band at 2036 cm-1 and a bridge adsorbed CO band at 1836 cm⁻¹. A step decrease in the CO inlet concentration with a simultaneous increase in the inlet ¹³CO concentration caused the linear and bridged CO to be replaced by linear and bridged ¹³CO at the same rate. The replacement is complete at 0.68 min after the switch.

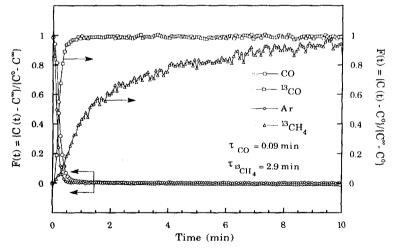


Fig. 2. Fractional tracer response of the gaseous products to the switch from CO to 13 CO during methanation. C^0 = initial concentration; C^{∞} = final concentration.

The gas-phase product response to the isotopic switch is shown in Fig. 2. The transient curves have been normalized to F(t), the fraction of the final response, for comparison. The CO and ¹³CO curves are shown to illustrate the switch between the two chemically equivalent gases. The CO curve lags behind the Ar curve because of the occurrence of adsorption and desorption of CO that did not react toward the product CH₄. The fraction of adsorbed CO which desorbs without further reaction to the total surface exposed Rh determined from the area between the CO and the Ar response was 0.67. The time for the complete replacement of the gaseous CO by ¹³CO measured by mass spectroscopy agrees very well with that of the adsorbed CO replacement measured by IR spectroscopy. This is direct evidence showing that the adsorption of CO on Rh/SiO₂ is a rapid, reversible process under reaction conditions. The ¹³CH₄ response curve is much slower than the Ar and ¹³CO response curves. Integration of the normalized transient curve provides the average residence time for the measured response (15). The actual residence time of the transient intermediates leading to gaseous species can be calculated by subtracting the residence time

of the Ar response from the residence time of the labeled species. The average residence time for the intermediates involved in the formation of methane, τ_{CH_4} , was determined to be 2.9 min. With the measured value of TOF and τ , the surface coverage, coverage, Θ , of intermediate species can be calculated from the equation

$$TOF = k\Theta = (1/\tau)\Theta, \tag{1}$$

assuming that the formation of CH₄ from adsorbed CO is an irreversible step. The fractional surface coverage as calculated from Eq. (1) is an upper limit to the actual surface coverage of CH_x species because it incorporates all surface carbon-containing species that react irreversibly toward CH₄ (2). The fractional surface coverage, Θ_{CH_x} , is calculated to be 0.043 for methanation. The measured surface coverage of adsorbed CO and CH_x is the same order of magnitude to those reported for Rh/Al₂O₃ (8) at 493 K (H₂: CO = 9:1) and Rh/SiO₂ (14, 16) at 526 K (H₂: CO = 3:1) and 483 K (H₂: CO = 2:1), respectively.

The product distribution for the reaction of ethylene with syngas at 513 K and 0.1 MPa contained C_1 – C_4 hydrocarbons and C_2 H₅CHO, the product of hydroformyla-

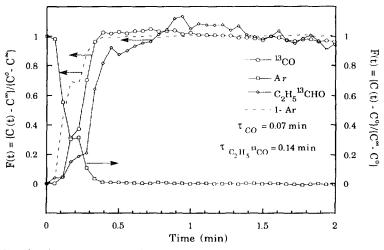


Fig. 3. Fractional tracer response of the gaseous products to the switch from CO to 13 CO during hydroformylation. C^{0} = initial concentration; C^{∞} = final concentration.

tion. The TOF of C₂H₅CHO was measured to be 0.13 min⁻¹. The conversion of CO was 0.11%. The IR spectra of the isotopic switch during hydroformylation is very similar to that of methanation. No IR bands for the adsorbed product were observed, indicating rapid desorption of the product. A linear CO band at 2037 cm⁻¹ and a bridge CO band at 1842 cm⁻¹ are rapidly replaced with ¹³CO bands at 1986 and 1797 cm⁻¹, respectively. Figure 3 is the normalized gaseous product response of the isotopic switch at 513 K and 0.1 MPa for the ethylene hydroformylation reaction. Shown in the figure are the responses of Ar, ¹³CO, and C₂H₅¹³CHO. The rate of appearance of ¹³CO in the gas phase is in good agreement

with that of the appearance of adsorbed ^{13}CO on the surface of the catalyst. From the ^{13}CO and the Ar response, the surface coverage of CO was calculated to be 0.57. The decreased CO coverage as compared to methanation is due to the presence of ethylene during hydroformylation. The residence time for intermediates involved in propional dehyde formation, $\tau_{\text{C},\text{H},\text{CHO}}$, was determined to be 0.14 min. Using Eq. (1), the upper limit to the fractional surface coverage for carbon-containing species that irreversibly react to propional dehyde is calculated to be 0.018.

The proposed reaction scheme (17–19) for the methanation and hydroformylation can be summarized in the following:

$$CO_{(g)} = {^*CO} \xrightarrow{^*H} {^*CH_x} \xrightarrow{^*H} CH_{4(g)}$$

$$C_2H_{4(g)} + 1/2 H_{2(g)} \longrightarrow {^*C_2H_x} \xrightarrow{^*CO} {^*C_2H_x}CO \xrightarrow{^*H} C_2H_xCHO_{(g)}$$

$$\xrightarrow{^*H} C_2H_{6(g)}$$

Here * indicates adsorbed sites. During the methanation reaction, adsorbed CO can dissociate and then hydrogenate to produce methane. The addition of ethylene to syngas initiates the formation of ethane and propionaldehyde. The effect of added ethylene on the transient response of CH₄ remains to be investigated. Propionaldehyde is formed by the insertion of linearly adsorbed CO into the adsorbed *C₂H₅ species which is generated from the hydrogenation of ethylene (13). A short residence time reflects high reactivity of intermediates, which corresponds to a large intrinsic rate constant. The results of this study indicate that the reaction sequence involving CO insertion and subsequent hydrogenation leading to C_{2+} oxygenates is much faster than CO dissociation followed by hydrogenation resulting in hydrocarbons. A higher rate constant of CO insertion compared to that of the formation of methane on Rh/SiO₂ has also been noted by Jackson et al. (20) in

transient pulse experiments. Further modeling will be required to determine the intrinsic rate constants for elementary steps and the surface coverage of various intermediates involved in the catalytic reaction.

REFERENCES

- Happel, J., Suzuki, I., Kokayeff, P., and Fthenakis, V., J. Catal. 65, 59 (1980).
- Biloen, P., Helle, J. N., van den Berg, F. G. A., and Sachtler, W. M. H., J. Catal. 81, 450 (1983).
- 3. Zhang, X., and Biloen, P., J. Catal. 98, 468 (1986).
- Peil, K. P., Goodwin, J. G., and Marcelin, G., J. Phys. Chem. 93, 5979 (1989).
- Nwalor, J. U., Goodwin, J. G., Jr., and Biloen, P., J. Catal. 117, 121 (1989).
- 6. Biloen, P., J. Mol. Catal. 21, 17 (1983).
- Tamaru, K., "Dynamic Heterogeneous Catalysis," Academic Press, New York, 1978.
- 8. Efstathiou, A. M., and Bennett, C. O., *J. Catal.* **120**, 137 (1989).
- Krishna, K. R., and Bell, A. T., in "Preprints of the 10th International Congress on Catalysis", Budapest Convention Centre, 19-24 July, 1992, Budapest, Hungary," p. 7.

- Mims, C. A., and McCandlish, L. E., J. Phys. Chem. 91, 929 (1987).
- Delgass, W. N., Haller, G. L., Kellerman, R., and Lunsford, J. H., "Spectroscopy in Heterogeneous Catalysis," Academic Press, New York, 1979.
- Tamaru, K., in "Catalysis: Science and Technology" (J. R. Anderson and M. Boudart, Eds.), Vol. 9. Springer-Verlag, New York, 1991.
- Chuang, S. S. C., and Pien, S. I., J. Catal. 135, 618 (1992).
- Siddall, J. H., Miller, M. L., and Delgass, W. N., Chem. Eng. Commun. 83, 261 (1989).
- Fogler, H. S., "Elements of Chemical Reaction Engineering," 2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 1992.
- Koerts, T., and van Santen, R. A., J. Catal. 134, 13 (1992).
- Biloen, P., and Sachtler, W. M. H., Adv. Catal.
 30, 165 (1981).

- Sachlter, W. M. H., and Ichikawa, M., J. Phys. Chem. 90, 4752 (1986).
- Chuang, S. S. C., Tian, Y. H., Goodwin, J. G.,
 Jr., and Wender, I., J. Catal. 96, 396 (1985).
- Jackson, S. D., Brandreth, B. J., and Winstanley, D., J. Catal. 106, 464 (1987).

MICHAEL W. BALAKOS STEVEN S.C. CHUANG¹ GIRISH SRINIVAS

Department of Chemical Engineering The University of Akron Akron, Ohio 44325

Received August 18, 1992; revised October 8, 1992

¹ To whom correspondence should be addressed.